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ABSTRACT

After reviewing some of the mathematical foundations and numerical diÆculties fac-
ing lattice QCD, I review the status of several calculations relevant to experimental
high-energy physics. The topics considered are moments of structure functions,
which may prove relevant to search for new phenomena at the LHC, and several as-
pects of avor physics, which are relevant to understanding CP and avor violation.
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1 Introduction

Several areas of research in elementary particle physics (as well as nuclear physics and

astrophysics) require information about the long-distance nature of quantum chro-

modynamics (QCD). Sometimes this information can be gleaned from experiment,

but often what one needs, in practice, are ab initio calculations of the properties of

hadrons. In some cases one aims for a detailed understanding of QCD in its own

right. In others, one simply requires a reliable calculation of hadronic properties, so

that one can study electroweak interactions or new phenomena at short distances.

Mathematical physicists tell us that the best way to de�ne gauge theories,

including QCD, is to start with a space-time lattice. The spacing between sites

is usually called a. If the �nite grid has N3
S � N4 sites, then one has a �nite box

size, L = NSa, and �nite extent in time, L4 = N4a. Quarks are described by lattice

fermion �elds located at the sites, denoted  (x); gluons are described by lattice gauge

�elds located on the links from x to x + a�̂, denoted U�(x). The key advantage to

the lattice is that local gauge invariance is simple. The �elds transform as

 (x) 7! g(x) (x); � (x) 7! � (x)g�1(x); (1)

U�(x) 7! g(x)U�(x)g
�1(x+ a�̂); (2)

so it is easy to devise gauge invariant actions, i.e., independent of g(x) [1]. If one

imagines a smooth underlying gauge potential A�(x) (as is used in continuum QCD),

the relation to the lattice gauge �eld is

U�(x) = P exp
Z a

0
dsA�(x+ s�̂): (3)

Continuum QCD is de�ned from lattice QCD by taking a ! 0 with L and hadron

masses �xed. Then one takes the in�nite volume limit, L!1. If one is interested

in the chiral limit,mq ! 0, it should be taken last. These limits are nothing radical:

the lattice provides an ultraviolet cuto�, and the �nite volume an infrared cuto�.

The existence of these limits has not been proven rigorously, but, because of

asymptotic freedom, there is not much doubt that this procedure works. (If not, why

does QCD work at all?) The lattice formulation makes �eld theory mathematically

similar to statistical mechanics and, consequently, provides new tools. For example,

a �nite lattice makes it possible to integrate the functional integral by Monte Carlo

methods. The expectation value of observable � may be written

h�(�)i =
1

Z

Z
D��(�)e�S(�) '

1

Z

X
i

�(�(i))w(�(i)) (4)
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where Z is chosen so that h1i = 1, and � is an abbreviation for all �elds,  , � , and U .

The right-most expression is a numerical approximation, with the sum running over

some set of �eld con�gurations. This numerical technique, though only one facet of

lattice gauge theory, is what most particle physicists mean by \lattice QCD." So,

this talk is about tools need to make numerical calculations more reliable, and the

progress being made in calculations needed to interpret \physics in collision."

It is not so easy to descend from the mathematical high ground down to

realistic, practical numerical calculations. DiÆculties arise because QCD is a multi-

scale problem. Nature has not only the characteristic scale of QCD, �QCD, but also

a wide range of quark masses, leading to a hierarchy

mq � �QCD � mQ: (5)

As a dynamical scale, rather than a parameter, there is a range for the QCD scale.

Some benchmarks include the scale in the running coupling �MS � 250 MeV, typical

hadron masses like m� = 770 MeV, and the scale of chiral symmetry breaking

m2
K=ms = 2500 MeV. The strange quark, with ms � 100 MeV, is light, and the up

and down quarks, with m̂ = 1
2
(md +mu) = ms=24 and md > mu > 0, are especially

light. The bottom quark, with mb = 4:25 GeV, is heavy, and the top quark, with

mt = 175 GeV, is especially heavy. One can argue whether the charmed quark, with

2mc = 2:5 GeV, is heavy or not.

Cuto�s are needed to put the problem on a computer, and they introduce

two more scales. The idealized hierarchy is now

L�1 � mq � �QCD � mQ � a�1: (6)

It is impractical to expect a huge separation of scales in computational physics. To

explain why, some simple scaling laws are helpful. The memory required grows like

N3
SN4 = L3L4=a

4, and these large exponents come because we live in 3 + 1 space-

time dimensions. The CPU time needed to update gauge �elds in the Monte Carlo

scales like a�(4+z), where z = 1 or 2, and the 4 again comes from the dimension of

space-time. The CPU time needed to compute quark propagators scales like m�p
q

where p = 1{3. The exponents z and p are non-zero because of properties of our

numerical algorithms, and it seems diÆcult to reduce them.

The �rst consequence of these scaling laws is that a�1 can be larger, but

not much larger, than �QCD. Similarly, mq and L
�1 can be smaller, but not much

smaller. A more important consequence is that improved methodology pays o�

enormously. For example, B physics with a�1 � 3�QCD instead of 3mb saves a
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factor (mb=�QCD)
6 > 212 in computing. Such improvements are not attained by

CPU power, but through new ideas. Moreover, in computational physics the need

for creativity means that computing facilities must be exible, not just big.

So, we see that �nite computer resources force us to consider the hierarchy

L�1 < mq < �QCD � mQ � a�1; (7)

instead of the idealized one. One should emphasize that we know how to get from

the practical hierarchy (7) to physical results. The central idea is to let the computer

work on dynamics at the scale �QCD, and to use e�ective �eld theories to get the

rest. The computer runs, by necessity, with �nite cuto�s and arti�cial quark masses.

With e�ective �eld theories, one can strip o� the arti�ce, and replace it with the

real world. In doing so, one introduces theoretical uncertainties, but e�ective �eld

theories control the error analysis.

A more thorough exposition of this line of thinking can be found in a recent

review [2]. Here let us emphasize the role of e�ective �eld theories by listing some

of the big ideas in lattice of the last several years:

� static limit and lattice NRQCD to treat heavy quarks

� understanding lattice perturbation theory (to match at short distances)

� non-perturbative implementation of the Symanzik e�ective �eld theory

� continuum HQET to control heavy-quark discretization e�ects

� novel applications of chiral perturbation theory

� understanding chiral symmetry in lattice gauge theory

All but the last explicitly bring in e�ective �eld theories, and it resonates with the

usage of chiral perturbation theory to extrapolate light quark masses.

The exception to the rule of e�ective �eld theory is something called the

quenched approximation. Quenched QCD is a model, so the associated uncertainty

is diÆcult to estimate. For example, unquenched (usually nf = 2 not 3) calculations

of hadron masses, decay constants, etc., suggest changes of 0{20%. Fortunately,

the quenched approximation is going away. Within a few years, I imagine that

quenched calculations will no longer play an important role in our thinking about

non-perturbative QCD.

The rest of this paper looks at some calculations needed to interpret current

and future experiments. Moments of structure functions can help obtain better
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matrix element at several di�erent lattice spacings. We have a detailed description

of lattice-spacing e�ects, namely,

hpjOnlatjpi(a) = Z�1
nm(�a)hpjOmjpi(�) + aKnjhpjO

0

jjpi

+ aK�FZ
�1
nm

Z
d4x hpjTOm�q�Fq(x)jpi+O(a2); (9)

based on an e�ective �eld theory introduced by Symanzik two decades ago [4].

Di�erences between lattice gauge theory, with a 6= 0, and continuum QCD arise at

short distances comparable to a. They are lumped into short-distance coeÆcients

Znm, aKnj, and aK�F . The operators on the right-hand side are, in the Symanzik

e�ective �eld theory, de�ned with a continuum renormalization. Thus, in addition

to calculating the left-hand side, to obtain hpjOmjpi one must also compute the

normalization factor Znm and cope with the terms of order a.

We know how to calculate Znm, K�F , and Knj. They depend on details of

the lattice Lagrangian and the lattice operator Onlat. One can introduce parameters

(call them cSW and cnj) that directly inuence K�F and Knj. Thus, one can ad-

justed cSW and cnj until K�F � 0 and Knj � 0. This procedure is called Symanzik

improvement [5]. There are two ways to compute the Zs and Ks. One is renor-

malized perturbation theory, which works because the Zs and Ks are short-distance

quantities. In this method, uncertainties of order �ls remain. Usually, these days,

only one-loop calculations are available, so l = 2. Then it is helpful to apply the

Brodsky-Lepage-Mackenzie prescription [6] to sum up higher-order terms related to

renormalization parts. The other method is fully non-perturbative [7]. This sounds

as if it is exact, but there are uncertainties in the Ks of order a. For the matrix ele-

ment itself, this is just another error of order a2, of which there are many. The �rst

method has been used by the QCDSF collaboration [8], who have rather comprehen-

sive results for the proton. The second method has been used by a Zeuthen-Roma II

collaboration [9], for the �rst moment of the pion structure function.

The quenched results from QCDSF do not agree especially well with phe-

nomenology. It is, of course, tempting (and reasonable) to blame the quenched

approximation. Till now, one could also blame the phenomenological result, which

gets a signi�cant contribution from the high-x region, where there are no experimen-

tal data. As it turns out, neither is the main culprit. Earlier this year the LHPC

and Sesam collaborations �nished a comparison of quenched and unquenched (well,

nf = 2) calculations of many proton moments [10]. To save computer time, these

calculations are done with arti�cially large light quark mass (for the reasons ex-

plained above). The dependence on the light quark mass for a typical moment is

6



shown in Fig. 1(b). Ref. [10] �nds hardly any di�erence between unquenched and

quenched calculations for 0:7ms < mq < 1:6ms. It makes a huge di�erence, how-

ever, whether one follows one's nose and extrapolates linearly, or whether one follows

chiral perturbation theory. The latter, of course, is correct. It has a pronounced

curvature for small quarks masses, of the form m2
� lnm

2
� (and m2

� / mq). With

chiral perturbation theory, the extrapolated result agrees with phenomenology.

3 Flavor Physics

The central question in avor physics is whether the standard CKM mechanism

explains all avor and CP violation (in the quark sector). One angle on this question

is over-constraint of the CKM matrix. Because the CKM matrix has only four free

parameters, the magnitudes of the CKM matrix elements dictate the CP violating

phase. Many of the magnitudes may be obtained from semi-leptonic decays, such as

K ! �l� for the Cabibbo angle, B ! D�l� for jVcbj, and B ! �l� for jVubj. CKM

elements on the third row (involving the top quark) enter through neutral meson

mixing, in the neutral K, B, and Bs systems. Here we will focus on B physics, with

a few remarks on K0- �K0 mixing in Sec. 3.4.

For B physics, one must confront heavy quark discretization e�ects. Com-

pared to the lattice spacing, the b quark mass is large, mba > 1. The Symanzik

e�ective �eld theory, at least as usually applied, breaks down. Lattice gauge theory

does not break down, however, and the Isgur-Wise heavy-quark symmetries emerge,

in the usual way, for allmQa [11]. Thus, as long asmQ � �QCD, lattice gauge theory

can be described by heavy-quark e�ective theory (HQET). One can write [12]

Llat
:
=
X
n

Clatn (mQ; mQa;�)On(�); (10)

where
:
= means \has the same matrix elements as." In the same way

LQCD
:
=
X
n

Ccontn (mQ;�)On(�): (11)

The di�erence is in the short-distance coeÆcients Cn. On the lattice there are two

short distances, a and m�1
Q , so the Clatn depend on the ratio a=m�1

Q = mQa. On the

other hand, the operators On in Eqs. (10) and (11) are essentially the same.

One can therefore systematically improve lattice calculations of b-avored

hadrons, by matching lattice gauge theory and continuum QCD such that

ÆCn = C
cont
n � Clatn � 0; (12)
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for the �rst several operators. HQET is, here, merely an analysis tool; details of

how HQET is de�ned and renormalized drop out of the di�erence. These ideas are

put to direct use in the Fermilab method [11, 12], which is based on Wilson fermions

and, thus, also possesses a smooth continuum limit. Similar ideas are put to use in

lattice NRQCD [13], which discretizes the continuum heavy-quark Lagrangian.

3.1 B ! D�l�, FB!D�(1), and jVcbj

To determine jVcbj from the semi-leptonic decay B ! D�l�, one measures the dif-

ferential decay rate in w, which is the velocity transfer from the B to the D�. Then,

one extrapolates to zero recoil, w = 1. Thus, one can summarize the experiment

by saying it measures jVcbjFB!D�(1), where FB!D�(w) is a certain combination of

form factors. At zero recoil all form factors but hA1
are suppressed, so

FB!D�(1) = hA1
(1) = hD�(v)jA�jB(v)i: (13)

It should be \straightforward" to calculate this matrix element in lattice QCD. But

a brute force calculation of hD�jA�jBi would not be interesting: similar matrix

elements like h0jA�jBi and (see below) h�jV�jBi have 15{20% errors.

At zero recoil heavy-quark symmetry constrains hA1
(1) to take the form

hA1
(1) = �A

h
1 + Æ1=m2 + Æ1=m3

i
; (14)

where �A is a short-distance coeÆcient, and the Æ1=mn are (principally) long-distance

matrix elements in HQET at order 1=mn. HQET does not provide the tools to

calculate them, but with the insight from matching lattice gauge theory to HQET,

we have recently �gured out how to do so [14]. Furthermore, since we incorporate

heavy-quark symmetry from the outset, and all our uncertainties scale as hA1
� 1.

From HQET, the structure of the 1=mn
Q corrections is

Æ1=m2 = �
`V

(2mc)2
+

2`A
(2mc)(2mb)

�
`P

(2mb)2
(15)

Æ1=m3 = �
`
(3)
V

(2mc)3
+
`
(3)
A � + `

(3)
D �

(2mc)(2mb)
�

`
(3)
P

(2mb)3
(16)

where � = 1=(2mc)+ 1=(2mb) and � = 1=(2mc)� 1=(2mb). In lattice gauge theory,

we seek objects whose heavy-quark expansions contain the `s. From work on the

B ! D form factor [15], we know certain ratios have small enough uncertainties.

Moreover, one can show via HQET that [12]

hDj�c4bjBihBj�b4cjDi

hDj�c4cjDihBj�b4bjBi
=

n
�latV

h
1� `P�

2 � `(3)P �2�
io2

; (17)
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hD�j�c4bjB�ihB�j�b4cjD�i

hD�j�c4cjD�ihB�j�b4bjB�i
=

n
�latV

h
1� `V�

2 � `
(3)
V �2�

io2
; (18)

hD�j�cj5bjBihB
�j�bj5cjDi

hD�j�cj5cjDihB�j�bj5bjBi
=

n
��latA

h
1� `A�

2 � `
(3)
A �2�

io2
; (19)

and one-loop expansions of �latV and ��latA are available [16]. By calculating the ratios

for many combinations of the heavy-quark masses, we can �t to the HQET descrip-

tion on the right hand side to obtain all three `s in Æ1=m2 , and three of four `(3)s

in Æ1=m3 . We can then reconstitute hA1
(1) with Eq. (14), �nding

FB!D�(1) = hA1
(1) = 0:913+0:024

�0:017 � 0:016+0:003
�0:014

+0:000
�0:016

+0:006
�0:014; (20)

where the uncertainties stem from statistics and �tting, HQET matching, lattice

spacing dependence, the chiral extrapolation, and the e�ect of the quenched ap-

proximation. Instead of adding these errors in quadrature, we prefer to take note

of a bound, FB!D�(1) � 1, and posit a Poisson distribution P (x) = Nx7e�7x,

x = [1� FB!D�(1)]=0:087 � 0, for global �ts of the CKM matrix [17].

3.2 B ! �l�, f+(E), and jVubj

To determine jVubj from the semi-leptonic decay B ! �l�, it is not just a rehash of

the previous section. The experimental rate is smaller, by a factor jVub=Vcbj
2, and

heavy-quark symmetry is not as constraining. Experiments should measure [18]

Z Emax

l

Emin

l

dEl

Z Emax
�

Emin
�

dE�
d2�

dEldE�
/ jVubj

2
Z Emax

�

Emin
�

dE� p
3jf+(E�)j

2; (21)

where E� = v � p� is pion energy in the B rest frame, p2 = E2
� � m2

�, and El is

charged lepton energy. To determine jVubj one needs a reliable calculation of the

form factor f+(E), which parametrizes the matrix element of the b ! u vector

current. Any cut on the lepton variable is equally good [18].

Recently there have been several calculations of these form factors, using

several di�erent methods [19, 20, 21, 22, 23]. Two of these works [19, 20] calculate

the matrix element with mQ around the charm mass, �t to a model for the E�

dependence, and extrapolate the model parameters with heavy-quark scaling. The

others appeal more directly to heavy-quark ideas, as discussed above. El-Khadra et

al. [21] use the Fermilab method, and the other two [22, 23] use lattice NRQCD.

Refs. [21, 22, 23] do not use a model for the E� dependence; instead a cut on E� is

used to control discretization e�ects.

An obvious challenge in these calculations arises from discretization errors

of the �nal-state pion, which grow as p�a. This makes it hard to get E� = 2:6 GeV.
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A possibility to circumvent this diÆculty is to give B meson momentum [24]. For

example, if one chooses �pB = p� = 800 MeV in the lattice frame of reference,

one can access the whole kinematic range. A less obvious, but also important,

challenge is the chiral extrapolation. It is not well understood and contributes

the largest systematic error in the calculation with the smallest quark masses [21].

The uncertainties on f+(E) are still 15{20% in the quenched approximation. But

there are no real technical roadblocks (for details, see Ref. [21]), so the errors will

be reduced while BaBar and Belle accumulate data. In the short term, it will be

interesting and important to compare similar lattice calculations for semi-leptonic

D decays to experimental results from CLEO-c.

3.3 Neutral B Mixing and jVtdj

In the Standard Model, neutral meson mixing is sensitive to Vtd and Vts. A signi�-

cant recent development is the realization that the theoretical uncertainty in B0- �B0

mixing has been underestimated. The culprit has been the chiral extrapolation,

which we have seen to be important in moments of structure functions.

In the Standard Model, the oscillation frequency for B0
d- �B

0
d mixing is

�md / jVtdj
2Md (22)

where Mq = h �B0
q j[
�b(1 � �)5q][�b(1 � �)5q]jB

0
q i. Phenomenologists usually write

Mq =
8
3
m2

Bq
f 2Bq

BBq
but lattice calculations give matrix elements Mq directly, and

fBq
from h0j�b�5qjB

0
q i. Nevertheless, it turns out to be useful to look separately at

fBq
and BBq

. Current world averages (from lattice QCD) are fBq
= 198� 30 MeV

and BBq
= 1:30� 0:12 [25]. So the error on jVtdj from �md alone is � 15%.

For some time, the conventional wisdom has said that most of the theo-

retical uncertainty cancels if one takes the ratio �ms=�md. (It is anticipated that

�ms will be measured at Run 2 of the Tevatron [26].) The ratio is

�ms

�md
=
����VtsVtd

����
2 mBs

mBd

�2; �2 =
f 2Bs

BBs

f 2Bd
BBd

: (23)

CKM unitarity says jVtsj = jVcbj to good approximation, and jVcbj is known to 2{

4%. Many authors believe the uncertainty in � to be less than 5%. Cancellations

do occur in the statistical error, and in systematics at short distances (a and m�1
b )

and|arguably|at medium distances (��1QCD). But they explicitly do not cancel at

long distances between m�1
s and m�1

d from light quarks in the Bs and B mesons.

Now, the quenched approximation does not work well at these long dis-

tances, and unquenched calculations are prohibitive at mq � md. Thus, � isolates
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the contributions that are hardest to capture, and tries to get at them by extrap-

olating in mq. After studying the di�erences in chiral logarithms in real QCD and

the quenched approximation, Booth [27] and Sharpe and Zhang [28] sounded notes

of caution. Their analyses showed that chiral logarithms should induce curvature

as a function of light quark mass, which quenching would obscure. This curvature

has recently been observed in unquenched calculations (well, nf = 2 again), and

identi�ed as a serious source of uncertainty [29].

It is not too diÆcult to grasp the problem. For convenience, let � = �f�B,

where �f = fBs
=fBd

, �2B = BBs
=BBd

. Chiral perturbation theory says that

�f(r)� 1 = m2
ss(1� r)

"
1
2
f2 �

1 + 3g2BB��

(4�f�)2
l(r)

#
; (24)

where m2
ss = 2m2

K �m2
�, r = mq=ms measures the light quark mass in units of the

strange mass, f� is the pion decay constant, and gBB�� is the B-B
�-� coupling. The

function l(r) contains chiral logarithms:

(1� r)l(r) = 1
4
(1 + r) ln [(1 + r)=2] + 1

12
(2 + r) ln [(2 + r)=3] � 3

4
r ln(r)

Bs mixing: Bs $ B�K Bs $ B�

s�
Bd mixing: B $ B�

sK B $ B�� B $ B��

(25)

and each term arises from the virtual corrections given beneath it. All other con-

tributions are described well enough by linear behavior in r and are lumped into

the constant f2. The ratio �2B is described by an expression similar to Eq. (24),

except that the chiral log is multiplied by 1 � g2BB��. Unquenched lattice calcula-

tions [29, 30] are not yet good enough to determine directly the coeÆcients of the

chiral logs. Sin�ead Ryan and I have suggested taking them from phenomenology

instead [31]. We invoke heavy-quark symmetry, which says the B-B�-� coupling

should be roughly the same as the D-D�-� coupling. Then the recent measurement

of the D� width yields g2DD�� = 0:35 [32]; we take g2BB�� = 0:35� 20%. We obtain

the constant f2 from the slope of �f(r) around 0:5 < r < 1:0, where quenched and

unquenched calculations are in good agreement. We also analyze �2B in the same

manner. Finally, we �nd

� = 1:32� 0:10 (chiral log extrapolation) (26)

from the chiral log �t. Previously, one had tried linear �ts, which would have given

� = 1:15� 0:05 (conventional linear extrapolation) (27)

for the same input. The di�erence is illustrated in Fig. 2(a). One sees that the

uncertainty of 5% [as in Eq. (27)] certainly was underestimated, and also that the

central value is probably quite di�erent from the conventional 1.15.
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analogously to BB) with domain-wall quarks. In Fig. 2, published results from

CP-PACS [38] and RBC [39] are compared to classic work of JLQCD (with Kogut-

Susskind quarks) [40]. The lattice spacing dependence seems gentler for domain-wall

fermions. From looking at the plot, a rough estimate of an average would be

BK(NDR; 2 GeV) = 0:58� 0:06 (28)

which encompasses also Ref. [41]. This uncertainty could easily be reduced, by

using, say, 3{5 lattice spacings with domain-wall (or overlap) fermions, and taking

the continuum limit. One should also keep in mind that these calculations have been

done in the quenched approximation, and with degenerate quarks of mass ms=2.

4 Conclusions and Prospects

Although the foundation of lattice QCD is sound, some diÆculties arise when turn-

ing the idealized theory into a computation tool. Errors are introduced at short and

long distances. They are controlled by e�ective �eld theories, however, providing

reliable methods to obtain physical predictions. A wide variety of calculations in

the quenched approximation have allowed us to learn how control short-distance

e�ects: both for light quarks and for heavy quarks. Now that several (partially)

unquenched calculations are available, other issues are becoming clearer, particu-

larly the chiral extrapolation of light quark masses. One can be optimistic that

unquenched calculations|with solid, transparent analyses of all uncertainties|will

become available to help interpret experiments with high-energy collisions.

One upcoming program is especially noteworthy vis a vis lattice QCD. In

the next few years, CLEO-c [42] will measure leptonic and semi-leptonic decays of

D and Ds mesons to a few per cent. Lattice QCD has a chance to predict their

results, perhaps with comparable accuracy. An especially interesting combination

is fD!Kl�
+ (E)=fDs

(and the Cabibbo-suppressed cousin fD!�l�
+ (E)=fD). The CKM

matrix drops out from the measurements, and non-Standard physics is unlikely.

Thus, one has direct tests of non-perturbative QCD. The ratio fDs
=fD is also in-

teresting, because it tests the chiral extrapolation of � in B- �B mixing. Successful

comparisons of lattice calculations and CLEO-c will give con�dence in other appli-

cations of lattice QCD, such as B physics and moments of the parton densities.
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